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Abstract 

This article examines the application of machine learning (ML) methods to predict and 

Analysis of diverse physical properties of polymers using a rich dataset of polymers properties, 

this study covers a wide range of polymer properties, ranging from compressive and tensile 

strength to thermal and electrical behaviors. Using different regression methods Like Ensemble, 

Tree-based, Regularization and Distance-based, this research is done completely Evaluation 

using the most common quality criteria as a result of a series of empirical studies In choosing 

effective model parameters, those that provide a high-quality solution for it The stated problem 

was found. The best results were obtained by Random Forest with the highest R2 scores of 0.71, 

0.73 and 0.88 for glass transition, thermal decomposition and melting temperature, 

respectively. Results are intricately compared and provide valuable insights into performance 

Distinct ML approaches in predicting polymer properties predicted unknown values for each 

characteristic and method validation was performed by training the predicted values. 

Comparing the results with the specified variance values of each characteristic. Not only 

research It improves our understanding of polymer physics but also helps in informed model 

selection and optimization for materials science applications. 

1.Introduction 

 The article explores the application of ML techniques in predicting and analyzing the physical 

characteristics of polymers. Harnessing the power of ML algorithms, the study delves into 

diverse polymer properties, ranging from compressive and tensile strength to thermal and 

electrical behavior. The prediction of physical characteristics in polymers is of paramount 

importance, spanning various industrial and scientific applications. This predictive capability not 

only enhances our fundamental understanding of polymer behavior [1] but also catalyzes 

advancements in materials science [2], manufacturing processes [3], and product development 

[4]. 

The research employs a variety of regression models, including Lasso Regression [13], Elastic 

Net [14], Decision Tree Regressor [15], Bagging Regressor [16], AdaBoost Regressor [17], 

XGBoost Regressor [18], Support Vector Regressor [19], Gradient Boosting Regressor [20], Linear 

Regression [21], and Random Forest Regressor [22]. Lasso Regression shines in feature selection 



 
by inducing sparsity through the regularization of some coefficients to zero [23]. While 

promoting model simplicity, it does come with the caveat of potentially discarding relevant 

features and displaying sensitivity to outliers. Linear Regression, known for its simplicity and 

interpretability, is suitable for capturing linear relationships [24]. However, its assumption of 

linearity may limit its performance with intricate, non-linear data. On the other hand, 

Polynomial Regression, offering flexibility to capture non-linear relationships, is susceptible to 

overfitting, particularly with higher-degree polynomials. Support Vector Regression (SVR), 

effective in high-dimensional spaces and robust to outliers, demands careful selection of kernel 

and parameters due to its computational intensity [25]. Decision Tree Regression, with its 

capability to handle non-linearity and interactions, is visually interpretable but prone to 

overfitting and sensitive to small variations in data. Random Forest Regression, an ensemble of 

decision trees, mitigates overfitting but introduces complexity and challenges in interpretation 

[26]. Gradient Boosting Regression, known for its high predictive accuracy by correcting errors 

of previous models sequentially, is susceptible to overfitting and requires meticulous 

hyperparameter tuning [27]. 

Elastic Net combines the strengths of Lasso and Ridge Regression, offering a balance between 

feature selection and regularization. However, navigating the optimal mix of L1 and L2 penalties 

poses a challenge [28]. Decision Tree Regressor excels in capturing non-linear relationships and 

intricate interactions within the data. Its visual interpretability is a notable asset, but caution is 

warranted as decision trees are susceptible to overfitting, particularly with complex data [29]. 

Bagging Regressor, an ensemble technique, mitigates overfitting by aggregating the predictions 

of multiple decision trees. While enhancing model robustness, it introduces complexity and may 

be less interpretable [30]. 

AdaBoost Regressor focuses on sequentially improving model performance by emphasizing 

misclassified instances. It tends to be less prone to overfitting but is sensitive to noisy data [31]. 

Gradient Boosting Regressor iteratively builds models, correcting the errors of previous ones 

[32]. It boasts high predictive accuracy but demands careful parameter tuning to avoid 

overfitting. XGBoost Regressor, an extension of Gradient Boosting, excels in predictive accuracy 

and handles missing data effectively [33]. However, it necessitates careful tuning of 

hyperparameters and can be computationally intensive. When generating input for models 

predicting various physical characteristics of polymers, a diverse set of features such as melting 

temperature, density and others, and processing conditions are meticulously considered. The 

inclusion of these multifaceted attributes ensures a comprehensive representation of the 

intricate relationships governing the polymers’ behavior, enhancing the models’ predictive 

capabilities. Each model undergoes rigorous assessment using metrics such as Mean Squared 

Error [34], R-squared [35], Root Mean Squared Error [36], Normalized Mean Squared Error [37], 

Mean Absolute Error [38], and Mean Percentage Error [39]. Due to the varying dimensions of 

the characteristics and the unequal number of non-zero values for each characteristic, it did not 

make sense to consider Mean Squared Error (MSE) and Mean Absolute Error (MAE). Since 



 
Normalized Mean Squared Error (NMSE) is expressed as 1 − R 2 , only the coefficient of 

determination (R 2 ) and Mean Percentage Error (MPE) were considered as objective metrics. 

The outcomes are then compared and contrasted, shedding light on the effectiveness of 

different ML approaches for predicting polymer properties. The findings not only contribute to 

advancing the understanding of polymer physics but also offer valuable insights into the 

selection and optimization of ML models for materials science applications. This research is a 

significant step towards leveraging ML to enhance our comprehension of complex material 

behaviors, paving the way for more efficient and accurate predictions in polymer science. 

2. Materials and Methods 

2.1. Dataset Preparation The original dataset contained information on 66,981 different 

characteristics [40] of polymer materials, representing 18,311 unique polymers with 99 unique 

physical characteristics, each characterized by varying quantities of known physical attributes 

[41]. Among these characteristics is crucial information in the form of Simplified Molecular 

Input Line Entry System (SMILES) strings. In Figures 1 and 2, the vertical bars represent the 

count of non-null values for each characteristic across the dataset. The index corresponds to the 

names of the characteristics, and the vertical axis indicates the count of non-null values. For 

understanding the completeness of the dataset the numerical annotations on top of each bar 

provided. Tables A1 and A2 provide an overview of key characteristics, including counts, means, 

standard deviations, minimum and maximum values, medians, and units, offering a 

comprehensive understanding of the dataset under consideration. The SMILES strings in the 

dataset adds a significant dimension to the information available for each polymer material 

[42]. SMILES provides a standardized and human-readable representation of the chemical 

structure of molecules. This chemical notation system not only facilitates the accurate 

identification of distinct polymers but also opens avenues for exploring the relationship 

between molecular structure and physical characteristics. 

 



 

 

Figure 1 

 

For each polymer, there was information on the median value of the physical characteristic and 

the possible variance, although often information about the variance was missing. None of the 

polymers had complete information on all characteristics. To initiate the machine learning 

process, the original dataset underwent a structural transformation. Each row now represents 

the following structure: the first column contains the material’s name, the second contains the 

corresponding SMILES string, the third indicates the number of known characteristics for that 

material, and the fourth lists the names of these characteristics. The subsequent 98 columns 

contain the median values of all characteristics, and another 98 columns contain the range 

values for each of these characteristics. This new data structure provides convenience for 

further analysis and the application of machine learning methods. The process of vectorizing 

SMILES into a binary feature vector using RDKit Python library is a crucial step in the analysis of 

polymer materials [43]. SMILES serves as a string representation of chemical compound 

structures, and its vectorization is a key stage for applying machine learning methods. To 

achieve this transformation, a technique is utilized that assigns a unique binary code to each 

SMILES character. The resulting binary vectors, with a length of 1024, constitute a set of bits 

reflecting the chemical structure of compounds. This process provides an efficient 

representation of information about the molecular structure, making it accessible for analysis 

and processing by machine learning algorithms. Through the vectorization of SMILES, unique 

numerical representations are created, serving as a valuable tool in addressing tasks related to 

predicting the physical characteristics of polymers. 

2.2. Model Training for Predicting the Physical Characteristics of Polymer 



 
In the process of preparing the dataset for predicting the physical characteristics of polymers, 

multiple transformations were applied to create an optimal data structure. The original dataset, 

comprising 66,981 unique characteristics of various polymer materials, included information 

about median values and dispersion. However, this information was often incomplete. To 

enhance the efficiency of machine learning model training, it was decided to iteratively create 

new datasets, each consisting of 1024 columns for representing SMILES and an additional 

column for each physical characteristic containing non-empty values. Subsequently, each of 

these created datasets was split into training and testing sets at an 80% to 20% ratio, 

respectively. In the training phase, diverse machine learning regression models, including but 

not limited to KNeighborsRegressor, Lasso, Elastic Net, Decision Tree, Bagging, AdaBoost, 

XGBoost, SVR, Gradient Boosting, Linear Regression, and Random Forest, were utilized to 

optimize the prediction of physical characteristics in polymer materials. Model performance was 

evaluated using metrics like MSE (Mean Squared Error), RMSE (Root Mean Squared Error), 

NMSE (Normalized Mean Squared Error), MAE (Mean Absolute Error), MPE (Mean Percentage 

Error), R 2 . Additionally, a custom metric was introduced, accounting for the difference 

between predicted and true values, considering a predefined non-zero dispersion value. The 

obtained evaluation results enable more effective utilization of trained models for predicting the 

physical characteristics of polymer materials. Hyperparameter optimization has been conducted 

for each model to maximize its predictive capability. Techniques such as grid search, random 

search to systematically explore the hyperparameter space and identify configurations that yield 

improved model performance [44]. Subsequently, all the obtained metrics for each feature with 

post-training on every model were saved in separate files. Following this, a graph analytical 

processing of these files was conducted to determine the optimal machine learning models for 

each characteristic. 

2.3. Using Prediction Method for Imputation of Missing Values of Polymer Physical 

98 Characteristics In contemporary polymer research, extensive datasets of physical 

characteristics are often analyzed, providing valuable information about material properties. 

However, the data collection process introduces the challenge of missing values, creating a 

hurdle in accurately reconstructing the complete dataset. This study introduces a novel 

approach to address this issue, based on the Prediction Imputation method. The Prediction 

Imputation method [45] is a way to fill missing values in data by utilizing machine learning 

models. In this research, we applied this method to predict missing values for each polymer’s 

physical characteristic, with the number of missing values varying for each characteristic. The 

process involved selecting a suitable machine learning regression model, training it on known 

data, and then using the trained model to predict values where they were missing. The 

evaluation of the method included comparing predicted values with real ones, where available. 

This innovative approach to handling missing data opens new perspectives for accurate analysis 

of polymer physical characteristics, improving data recovery and providing more reliable 

research results. The analysis of obtained metrics identified optimal regressors for each 



 
characteristic, forming a diverse set of best machine learning models. Each applied model was 

saved using the joblib library for subsequent use. Subsequently, in accordance with information 

about the best models, missing values for each characteristic were predicted using the 

corresponding optimal regressor. These predicted values were merged with the known values, 

creating a dataset where all characteristics were filled according to the best models used. Thus, 

this approach not only efficiently utilizes predictive models for recovering missing data but also 

allows adapting model selection for each specific characteristic, ensuring more accurate 

investigation of polymer physical properties. 

2.4. Examination of Our Approach 

To assess the quality of predicted characteristic values, the same series of experiments were 

conducted to evaluate the consistency between predicted and actual data. For each of the 66 

characteristics (for three out of 68 characteristics for which the number of non-zero values was 

initially greater than 50, the model could not be saved), where the initially known values 

exceeded 50, an 11-fold experiment was performed. The specificity of the experiment involved 

using only predicted values as the training set, while the test set consisted of actually known 

characteristic values. This approach allowed for evaluating the accuracy of predictive models, 

considering real data, and provided more reliable indicators than using random or other sample 

separation methods. Consistency assessment was conducted using the variance metric. The 

results of these experiments provide information about the degree of alignment between 

predicted values and actual data for each regression model, as well as a comprehensive picture 

across all characteristics. An important implication of these experiments is the possibility of 

selecting the most effective models for each specific characteristic, ultimately enhancing the 

accuracy and reliability of predicting polymer physical property values. The obtained 

assessments can be utilized to choose optimal regressors for further research in materials 

science and polymer science. 

3.Conclusions  

In conclusion, this study aimed to predict missing values for various physical characteristics of 

polymers using machine learning techniques. The predictive models, including Random Forest, 

Gradient Boosting, and XGBoost, demonstrated strong performance, with the Random Forest 

model achieving the highest R 2 scores of 0.71, 0.73, and 0.88 for glass transition temperature, 

thermal decomposition temperature, and melting temperature, respectively. The validation 

process involved predicting unknown values, showcasing the reliability of the models. 
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