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Abstract 
The ulterior motive of studying floating wind turbine is to decrease the harmful effects of global 

warming issue. Owing to the crucial changes of the Earth planet, the high potential of active structural 

control and the technical requirements associated with adaptation of floating wind turbine is applicable. 

An artificial intelligent controller involving deep reinforcement learning method of both state and action 

pairs is proposed as useful tool to cope with the variant environmental situations. The floating wind 

turbine tracks an input reference signal driving by a controller that approximates the inverse of plant 

model. The proposed adaptive algorithm should minimize the tracking error of the plant output with 

respect to the reference model output and the controller parameters are updated as well. The model 

reference adaptive control system is affected by sensor noise and exogenous disturbances. Modeling 

uncertainties and exogenous inputs are imposed in the overall control system through the proposed 

intelligent controller. The gathered rewards of both the identification and feed forward terms with 

control actions in loss function undergoes a Genetic Algorithm (GA) optimization process. Through 

software implementation results, removing the disturbance and noise effect on the tracking performance 

of the wind turbine and its stability is vivid. 
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1. Introduction 

  This paper explores adaptive signal processing techniques to minimize plant disturbances and address challenges in 
dynamic system control. The approach involves optimal least-square methods for plant dynamics and disturbance 
control separately. Inverse control, implemented for both minimum and non-minimum phase systems, uses feed-
forward compensation by driving the plant with a filter whose transfer function is the plant's inverse. To leverage 
intelligent control, the plant model is first identified using conventional neural networks, followed by adaptive inverse 
control that incorporates model reference control through an additional loss function term. 
Benchmark problems are crucial for evaluating control systems, with wind turbines being a notable example due to 
their complexity, nonlinearity, and under-actuated nature. Research in this field aims to develop controllers that 
stabilize wind turbines while ensuring robustness against external disturbances [1]. Adaptive control is beneficial for 
noisy, unknown, or time-variant plants, as it adjusts parameters dynamically to meet varying requirements [2].  
The study designs a floating wind turbine with 16 degrees of freedom and three control actions while considering 
wave and wind disturbances. Deep reinforcement learning (RL) is applied for control optimization. The concept of 
minimizing disturbance power through optimal adaptive disturbance cancellation, initially demonstrated by Widrow 
and Walach [1], is further extended. Model Reference Adaptive Control (MRAC) using state variable filters [3] and 
adaptive filtering for nonlinear systems [4] have been explored in prior work, influencing this study’s approach. 
Adaptive filtering finds applications in antenna systems, channel equalization, spectral estimation, and speech 
processing. 
The paper highlights how deep RL-based adaptive filtering algorithms can control unknown and time-varying systems. 
Traditional adaptive control involves state feedback with variable parameter networks, while signal processing 
methods adapt transversal filter weights using gradient methods. The study first applies adaptive filtering for direct 
modeling of a floating wind turbine, then repurposes the same neural network for inverse control. The plant is assumed 
to be controllable and observable, with an unknown input-output transfer function. 
Machine learning (ML) offers an alternative approach, utilizing data-driven methods to construct models for complex 
systems [5]. Simulation-generated synthetic data enables diverse applications of neural networks [6], including 
imitation learning for motor skills [7]. However, RL is preferred for optimizing control, as it dynamically generates 
samples and learns from sparse reward signals [8]. Effective RL policies depend on well-defined reward functions [9] 
and require minimal prior knowledge [10-15]. RL methods, integrating optimal and adaptive control properties 
[16,17], are computationally efficient and suited for nonlinear systems. 
This paper emphasizes the capability of ML and RL for mechanical engineering applications. RL-based controllers 
treat the mechanical system as a black-box environment, collecting input-output data without relying on explicit 
physical models. The key challenge is defining an appropriate reward function tailored to engineering problems. Post-
training techniques further enhance control policy robustness, ensuring satisfactory performance despite 
environmental uncertainties. Traditional robust control struggles with physical parameter variations, whereas RL-
based controllers leverage neural networks’ generalization ability to maintain robust performance. 
The study employs numerical experiments to evaluate an RL-based nonlinear controller for wind turbines. The 
contributions include robustness analysis of RL-based control, efficiency improvement in real-world applications 
through a parametric training policy, and testing under modified environments. The disturbance model uses a more 
precise wave disturbance formulation, making this study the first comprehensive application of deep RL for wind 
turbine control, including disturbances. A novel training method extends the agent’s capability by re-training neural 
networks in a modified environment with disturbances. 
For numerical validation, a single-frequency sinusoidal disturbance model based on linear wave theory is used. Proper 
computational tools are essential for capturing disturbance effects accurately, often requiring complex numerical 
solutions for differential equations. Engineering applications favor simplified models like stationary step disturbances 
for practical feasibility. This study integrates adaptive filtering with deep RL, training inverse and feed-forward neural 
network parameters using genetic algorithms. The optimal solution from each generation updates the system, leading 
to improved data efficiency and robustness in real-world implementations.   

2. Research Methodology 

  Due to the lack of information source in the field of combination deep RL and GA, as a brief explanation, the 
procedure of applying these two methods should be clarified to the reader. Therefore, this section is divided to 
individual parts each of which is for special purpose.   

2.1. Structure and Training of Deep Reinforcement Learning  

  RL is a data-driven approach to solving decision-making problems in the form of Markov Decision Processes. Figure 
1 shows the workflow where an agent is fed with an observation s and a reward r so that it can decide an action a  to 
take on an environment, with the scope of optimizing the cumulative reward ∑ 𝑟 over time [18,19]. 
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Figure  1: Workflow scheme of the RL approach. 

 
    In this work, the algorithm used for training the agent is the Deep Deterministic Policy Gradient (DDPG) [20], an 
off-policy, model-free, actor-critic structured approach. The agent is composed of four neural networks, namely the 
Q-function Q𝜗,the policy  𝜑, and their respective target lagged copies 𝑸𝜗′

′  , and  𝝅𝜑′
′ . The Q𝜗 network approximates 

the Q-function of the environment, that is the function predicting the cumulative reward for a given 𝑠 and 𝑎. The 

policy  𝜑 maps the state with an action. Each of the target copies contains lagged parameters of its corresponding 

neural network. The DDPG algorithm works through the joint learning of the optimal Q-function and the policy. The 
RL loop begins with the random initialization of the four neural networks. Then, the agent begins to act in the 
environment to save experiences in an experience buffer of dimension D. Each entrance of the experience buffer is a 
tuple with the configuration (𝒔, 𝒂, 𝒓, 𝒔′) where  𝒔′ characterizes the new state of the system after taking action a. 
Then, so as to estimate the optimal Q-function, the Mean Squared Bellman Error (MSBE) is minimized by taking on 
the loss function specified by [21]: 

 𝐿𝑀𝑆𝐵𝐸 = ∑𝑑
𝑖=1 (𝐐𝜗(𝐬𝑖 , 𝐚𝑖) − 𝑦𝑖(𝒔𝑖 , 𝒂𝑖, 𝒓𝑖 , 𝐬𝑖

′))      (1) 

where 𝐐𝜗(𝐬𝑖 , 𝐚𝑖) is the quantity of the neural network with the current approximation of the optimal Q-function, d is 
the size of the replay buffer of former experiences haphazardly sampled from the experience buffer of length D 
enclosing a subset of all the transitions in (𝒔, 𝒂, 𝒓, 𝒔′) tuples, 𝒔′ is the observation of the subsequent state, and 𝑦𝑖  is 
the target value function defined as: 

 𝑦𝑖 = {
𝑟𝑖 + 𝛾𝐐𝜗′

′ (𝐬𝑖
′, 𝜋𝜙′

′ (𝐬𝑖
′)) , 𝑡 < 𝑡𝑒𝑛𝑑

𝑟𝑖 ,                𝑡 = 𝑡𝑒𝑛𝑑

       (2) 

where t is the time of the observation 𝒔′, 𝑡𝑒𝑛𝑑   is the total duration of the incidence of training, and 𝛾 is the discount 

factor. In Eq. (2), the target lagged copies 𝜋𝜙′
′ (𝐬𝑖

′) and 𝐐𝜗′
′ (𝐬𝑖

′, 𝜋𝜙′
′ (𝐬𝑖

′)) are utilized to avoid the instability in the 

training procedure derived from the recursive approach to approximate the Q-function. Then, the neural network 𝐐𝜗 
is updated through the use of GA to optimize MSBE. 
 Eventually, the parameters 𝜗′ and 𝜑′ of the target neural networks 𝐐𝜗′

′   and 𝜋𝜙′
′ , are updated by Polyak averaging 

with the parameter 𝜏 as: 
 𝜗′ = 𝜏𝜗 + (1 − 𝜗)𝜗′,        𝜑′ = 𝜏𝜑 + (1 − 𝜑)𝜑′      (3) 
This procedure is reiterated until the optimal policy is found.   

2.2. Structure and Basis of Genetic Algorithm  

  In implementation of a neural network algorithm, we try to recreate the working procedure of neurons in the human 
brain. GAs are another class of algorithms which use the concept of Darwin’s theory of evolution. Based on this theory 
the existence of all living things is relevant to the rule of "survival of the fittest". Darwin also postulated that three 
main processes in which new breeds of living things come into existence involve reproduction, crossover, and 
mutation among existing organisms. As solutions to problems in a more natural way, these concepts in the theory of 
evolution have been translated into algorithms to search . First, variant possible solutions to a problem are guessed. 
These solutions are then tested for their performance i.e., how good a solution they provide. Among all possible 
solutions, a rate of the good solutions is selected, and the others are removed i.e., survival of the fittest. The chosen 
solutions undergo the processes of reproduction, crossover, and mutation to make a new generation of possible 
solutions which are expected to do better than the previous generation. The process of producing a new generation 
and its evaluation is reiterated until there is convergence within a generation [22]. The advantage of this technique is 
to search for a solution from a wide spectrum of possible solutions, rather than limit the search to a narrow range 
where the results would be normally expected. The concept above mentioned is shown in Figure 2. 
 In a GA, the parameter set of the problem is coded as a finite string of bits. For example, given a set of data for 
amounts of weights, we want to fit a curve through the data. To get a better fit, we encode the parameter set for MSBE 
in Eq. (1) by creating independent bit strings for the unknown parameters and then concatenate the strings. The bit 
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strings are combinations of zeros and ones, which represent the value of a number in binary form. An 𝑛-bit string can 

accommodate all integers up to the value 2𝑛 − 1. As an example, the number 7 requires a 3-bit string, that is,  23 −
1 = 7, and the bit string would look like " 111 ," where the first unit digit is in the 22 place (= 4), the second unit 

digit is in the 21 place  (= 2), and the last unit digit is in the 20 place (= 1); hence, 4 + 2 + 1 = 7. The number 10 

would look like "1010," that is, 23 + 21 = 10, from a 4-bit string. This bit string may be mapped to the value of a 
parameter, say 𝐶𝑖, 𝑖 = 1, … , 𝑛, by the mapping [23] 

 
Figure  2: All Processes needed to solve optimal solution with GA 

   𝑊𝑖 = 𝑊min +
𝑏

2𝐿−1
(𝑊max

𝑖
  − 𝑊min

𝑖
  )       (4) 

where 𝑏 is the number in decimal form that is being represented in binary form, for example, 152 may be represented 
in binary form as 10011000, 𝐿 stands for the length of the bit string 𝐿 is the length of the bit string, in our case is equal 

to 6, 𝑊max and 𝑊min are user-defined constants between which amounts of weights vary linearly. The length of the 
bit strings is based on the handling capacity of the computer being used, that is, on how long a string, strings of each 
parameter are concatenated to make one long string representing the whole parameter set, the computer can manipulate 
at an optimum speed. 
 All genetic algorithms contain three basic operators: reproduction, crossover, and mutation, where all three are 
analogous to their namesakes in genetics. First, an initial population of 𝑛 strings of length 𝐿 is created. The strings are 
created in a random fashion. Each of the strings is decoded into a set of parameters that it represents. This set of 
parameters is passed through a numerical model of the problem space. The numerical model gives out a solution based 
on the input set of parameters. On the basis of the quality of this solution, the string is assigned a fitness value. The 
fitness values are determined for each string in the entire population of strings. With these fitness values, the three 
genetic operators are employed to create a new generation of strings, which is expected to perform better than the 
previous generations. The new set of strings is again decoded and evaluated, and a new generation is created using 
the three basic genetic operators. This process is continued until convergence is achieved within a population. Among 
the three genetic operators, reproduction is the process by which we try to ensure that better solutions persist and 
contribute to better offspring during successive generations. This is a way of ensuring the "survival of the fittest" 
strings. Because the total number of strings in each generation is kept a constant, strings with lower fitness values are 
eliminated. 
 The second operator, crossover, is the process in which the strings are able to mix and match their desirable qualities 
in a random fashion. After reproduction, crossover proceeds in three simple steps. First, two new strings are selected 
at random shown in Figure 3a. Second, a random location in both strings is selected illustrated in Figure 3b. Third, 
the portions of the strings to the right of the randomly selected location in the two strings are exchanged demonstrated 
in Figure 3c. In this way information is exchanged between strings, and portions of high-quality solutions are 
exchanged and combined. Reproduction and crossover together give genetic algorithms most of their searching power. 
The third genetic operator, mutation, helps to increase the searching power. In order to understand the need for 
mutation, let us consider the case where reproduction or crossover may not be able to find an optimum solution to a 
problem. During the creation of a generation it is possible that the entire population of strings is missing a vital bit of 
information, e.g., none of the strings has a one at the fourth location that is important for determining the correct or 
the most nearly optimum solution. Future generations that would be created using reproduction and crossover would 
not be able to alleviate this problem. Here mutation becomes important. Occasionally, the value at a certain string 
location is changed, that is, if there is a one originally at a location in the bit string, it is changed to a zero, or vice 
versa. Mutation thus ensures that the vital bit of information is introduced into the generation. Mutation, as it does in 
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nature, takes place very rarely, on the order of once in a thousand bit string locations. The process of generation of 
strings and their evaluation is continued until we get a convergence to the solution i.e., final values for weights within 
a generation. 

 
Figure 3: Crossover in strings. (𝑎) Two strings are selected at random to be mated; (𝑏) a random location in the strings 
is located i.e., here the location is before the last three bit locations; and (𝑐) the string portions following the selected 
location are exchanged. 
 

2.3. Adaptive Inverse Control Implementation 
  One of the suitable answers to resist against variant dynamic or conditions of any system is adaptive methodology. 
It tries to tune parameters of controller with adaptation rules which can be obtained by Lyapunov’s stability. Also, 
adaptive inverse control uses feedforward filter whose transfer function is the same as the one which obtains the 
inverse of the main plant backward direction [24]. The difference between two input signals, one obtained by inverse 
transfer function and the other obtained by feedforward filter, is back propagated to regulate the parameters of 
controller. However, in our case the adaptive filter is substituted with deep reinforcement learning network and instead 
of backpropagation of differences in errors, genetic algorithm tries to find the optimum and the fittest weight. This 
procedure is shown in Figure 4. The combination of structures of adaptive inverse and deep RL makes the error MSBE 
in Eq. (1) be added to difference between inputs. Therefore, the GA efforts are constrained to optimize the following 
loss function:  

 

𝐿𝑜𝑠𝑠  𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =
1

𝑑
∑𝑑

𝑖=1   (𝐐𝜗(𝐬𝑖 , 𝐚𝑖) − 𝑦𝑖(𝐬𝑖 , 𝐚𝑖 , 𝑟𝑖 , 𝐬𝑖
′))

2
  |𝑖𝑑 −

1

𝑑
∑𝑑

𝑖=1   (𝐐𝜗(𝐬𝑖 , 𝐚𝑖) − 𝑦𝑖(𝐬𝑖 , 𝐚𝑖 , 𝑟𝑖 , 𝐬𝑖
′))

2
|𝑓𝑓

+
1

𝑑
(𝑢 − 𝑢𝑒)2

    (5) 

 Where subscript ‘id’ stands for identification part in which the first actor and critic of deep RL produces 𝑢𝑒   and ‘ff’ 

shows the feedforward part in which the second copy of actor and critic of deep RL produces  𝑢. Our purpose is to 
find the minimum of the Eq. (5) that arises the update of networks and controls the floating wind turbine affected by 
disturbance.  

2.4. Dynamic Model Description and Numerical Experiments’ Setup 

  Lately, a plethora of benchmark problems has been used to evaluate the performance of RL algorithms. For instance, 
the Arcade Learning Environment [25,26] for discrete action space problems or OpenAI Gym [27], which considers 
benchmark control problems. Among the latter, there is the floating wind turbine [28], a multi-variable, innately 
unstable. When it comes to RL, the adequate level of complexity of the turbine system results in being beneficial due 
to its potential generalization to different domains, as opposed to other RL benchmarks such as the locomotion task 
[29,30], which requires highly specific algorithmic adaptations. In this paper, the mentioned system is chosen as a 
case study because its topological straightforwardness allows for execution with a detailed study of the sensitivity of 
the developed controller in the presence of disturbance forces. Figure 5 shows the scheme of the system, consisting 

of 𝐹⃖𝐴 the aerodynamic force, 𝐹⃖𝐵 buoyancy force, 𝐹⃖𝐶 catenary line forces and 𝐹⃖𝐷 hydrodynamic drag/inertial force. For 

each of these forces, there is an associated torque (𝑇⃖ 𝐴, 𝑇⃖ 𝐵, 𝑇⃖ 𝐶  and 𝑇⃖ 𝐷), however these are not shown for lucidity. With 
the states 𝑥, control inputs 𝑢 and disturbances 𝑣 and 𝑤, we can derive the equations of motion. The nonlinear function 
f can be written as [31]:  
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Figure  4: Adaptive inverse control with deep reinforcement learning 

     

 𝑓(x, 𝐮, 𝐯, 𝐰) =

[
 
 
 
 
 
 
 
 
𝑥⃖𝑔

𝜃⃖𝑔

(
𝜔𝑟

𝜔𝑔
)

or  
(𝜔𝑟 −

1

𝑁𝐺𝑅
𝜔𝑔)

𝑓𝐹(𝐱, 𝐮, 𝐯, 𝐰)

𝑓𝑇(𝐱, 𝐮, 𝐯, 𝐰)

𝑓𝑄(x, u, v) ]
 
 
 
 
 
 
 
 

       (6) 

 The force equation will be employed to obtain the accelerations. That is, in Eq. (6), 𝑓𝐹(x, u, v, w) will be the sum of 
all the forces acting on the structure:  

 𝑓𝐹(x, u, v, w) = (𝑚𝑔𝐼3×3 + 𝑑𝑖𝑎𝑔[𝑚⃖  𝑎])
−1

∑𝑗     𝐹⃖𝑗(x, u, v, w)     (7) 

 where 𝑚𝑔 is the total weight of the structure, 𝐼3×3 is the identity matrix, 𝑚⃖  𝑎 is the mass, and 𝐹⃖𝑗(x, u, v, w) will contain 

all applied forces. 

 The torque equation will be to obtain angular accelerations, i.e. in Eq. (6) 𝑓𝑇(x, u, v, w) will be the sum of all the 
torques resulting from the applied forces on the structure [31]:  

 𝑓𝑇(x, u, v, w) = (RI𝑔
−1R𝑇) ∑𝑗     𝑇⃖ 𝑗(x, u, v, w)       (8) 

 
 

 
Figure  5: Overall Force Diagram of the Non-Linear Model 

   where 𝐼𝑔 is the inertial tensor around the vertical axis, 𝑅 is the transformation matrix, and 𝑇⃖ 𝑗(x, u, v, w) includes all 

of the torques by the forces acting on the structure. 
 𝑓𝑄(x, u, v) is also found by:  

 𝑓𝑄(x, 𝐮, v) = [
∑𝑘𝑟

  
1

𝐽𝑟
𝑄𝑘𝑟

(x, u, v)

∑𝑘𝑔
  

1

𝐽𝑔
𝑐(x, 𝐮, v)

]        (9) 
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 where 𝐽𝑟 and 𝐽𝑔 represent the inertia about the rotor-side shaft and generator-side shaft, respectively, and 𝑄𝑘𝑟
 and 𝑄𝑘𝑔

 

represent the 𝑘𝑟
𝑡ℎ

 and 𝑘𝑔
𝑡ℎ

 torque about each respective shaft. The aim of simulation is to determine the displacement 

components along the “𝑋𝑡,𝑌𝑡,𝑍𝑡” directions, as “surge, sway and heave” respectively, and the angle components 

around body axes “𝑥,𝑦,𝑧”, as “roll, yaw, pitch”, respectively. To become more familiar with the components of the 
problem, refer to the Figure 6a. 
The buoyancy force acting on a floating object is identical to the weight of the fluid being moved by object based on 

Archimedes’ principle. The operative buoyancy force on the 𝑖 𝑡ℎ fluctuating cylinder is:  

 𝐹⃖𝐵,𝑖(𝑥) = 𝜌𝜔𝑔𝐴𝑖𝑙𝑖 𝑒̂3         (10) 

 Where 𝜌𝜔is the density of water, 𝑔the gravity constant, 𝐴𝑖the cross section of the cylinder and 𝑙𝑖length of cylinder. 
 The drag force is a squandering force that resists the relative motion between the body and the fluid. For a transversely 
immersed cylinder, the Morrison equation provides a simple approximation for the surface drag force associated with 
the flow direction [31]:  

 𝐹⃖𝐷𝑡 = 𝐾𝑑,𝑖‖𝑣⃖𝑡,𝑖‖ + 𝐾𝑎,𝑖𝑎⃖𝑡,𝑖         (11) 

where 𝐾𝑑,𝑖 is the drag constant and 𝐾𝑎,𝑖 the inertia constant of the Morrison equation, and 𝑣⃗𝑡,𝑖 and 𝑎⃗𝑡,𝑖  are the transverse 

velocities and accelerations. 
 The thrust force is the wind force in a direction parallel to the axis of rotor rotation, while the drag force is the wind 
force in the direction of motion of a point on the blade. Indeed, these forces are constantly acting on the entire blade. 
However, for simplicity, the net thrust force for all three blades is placed in where is called the thrust center. 
 The net thrust force is estimated as:  

 𝐹⃖𝐴 =
1

2
𝜌𝐴𝑟𝐶𝑡(𝜆, 𝛽)‖𝑣⃖𝑛‖𝑣⃖𝑛        (12) 

where 𝐶𝑡 is the drift coefficient, a function of the tip speed ratio (TSR) and the blade pitch angle. The  𝜌  and  𝐴𝑟  show 
the air density and the swept area of the rotor, respectively. 
 With 𝑁𝑔𝑟 as gear ratio, we reckon its torque, the same transformation matrices will reappear in the equation and the 

generator torque term will be added:  

 𝑇 = 𝑅 × 𝐹⃖𝐴(𝑥, u, 𝑣) + 𝑇𝑔𝑅
𝐽𝑟+𝑁𝑔𝑟𝐽𝑔

𝐽𝑟+𝑁𝑔𝑟
2 𝐽𝑔

𝑒̂1       (13) 

 If the aerodynamic power is written:  

 𝑃 =
1

2
𝜌𝐴𝑟𝐶𝑝(𝜆, 𝛽)‖𝑣⃖𝑛‖3         (14) 

 The torque balance about the rotor axis and the generator axis leads to [31]:  

 

𝜔⃖  𝑟 =
1

𝐽𝑟
(

𝑃

𝜔𝑟
− 𝑘 (𝜃𝑟 −

1

𝑁𝑔𝑟
𝜃𝑔) − 𝑏 (𝜔𝑟 −

1

𝑁𝑔𝑟
𝜔𝑔))

𝜔𝑔 ⃖    =
1

𝐽𝑔
(−𝑇𝑔 +

𝑘

𝑁𝑔𝑟
+

𝑏

𝑁𝑔𝑟
(𝜔𝑟 −

1

𝑁𝑔𝑟
𝜔𝑔))

      (15) 

 
a)                   b) 

Figure 6: a) Angular and displacement components of system. b) Drag force of cables. 
  The mooring system consists of a series of cables connecting the wind turbine into the seabed. The force cables 
provide a recovery force in response to structural shifts caused by wind, wave’s disturbances. The Gaussian static 
model of a cable is described in two dimensions and entails two nonlinear coupling equations relating the horizontal 
and vertical distances between the ends of the cable to the two-dimensional force at the wind turbine connection point. 
It is important to note that the equations change depending on whether a part of the rope is on the seabed or is in direct 
contact with seabed. Figure 6b illustrates cable’s force. 
The vector 𝑥⃗𝑡,𝑖 is the point of connection to the structure given by:  

 𝑥⃖𝑡,𝑖 = 𝑥⃖𝑎,𝑖 − 𝑥⃖𝑔 − 𝑅𝑟⃖𝑔𝑐𝑖
𝑏          (16) 

 The vector of 𝑥⃗𝑡,𝑖must be decomposed into its components along the axes. It is operated as:  
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𝑥⃖𝑡ℎ,𝑖 =

(
1 0 0
0 1 0
0 0 0

)(𝑥⃖𝑎,𝑖−𝑥⃖𝑔−𝑅𝑟⃖𝑔𝑐𝑖
𝑏 )

‖𝑥⃖𝑡,𝑖‖

𝑦𝑡 = (
0
0
1
) (𝑥⃖𝑎,𝑖 − 𝑥⃖𝑔 − 𝑅𝑟⃖𝑔𝑐𝑖

𝑏 )

        (17) 

 the forces in the x and y directions are obtained:  

 

𝐹𝑥 =
𝑊𝑐

(1  ‖𝑥⃖𝑡,𝑖‖  ‖𝑥⃖𝑡,𝑖‖
2
  ‖𝑥⃖𝑡,𝑖‖

3
  ‖𝑥⃖𝑡,𝑖‖

4
  ‖𝑥⃖𝑡,𝑖‖

5
)𝑃𝑐[

1
𝑦𝑡

]
𝑥⃖𝑡ℎ,𝑖

𝐹𝑦 = 𝑊𝑐√(
2

(1  ‖𝑥⃖𝑡,𝑖‖  ‖𝑥⃖𝑡,𝑖‖
2
  ‖𝑥⃖𝑡,𝑖‖

3
  ‖𝑥⃖𝑡,𝑖‖

4
  ‖𝑥⃖𝑡,𝑖‖

5
)𝑃𝑐[

1
𝑦𝑡

]
+ 𝑦𝑡) 𝑦𝑡 [

0
0
−1

]

    (18) 

3. Implementation of New Approach 
  The instant reward function for the environment is defined as follows:  

 𝑟 = {
𝑟1,        𝑦 ≤ 𝑦𝑙𝑖𝑚

𝑟2,        𝑦 > 𝑦𝑙𝑖𝑚
         (19) 

 where  𝑦 stands for output of the plant, 𝑦𝑙𝑖𝑚 is the maximum desirable amounts allowed for the plant during the 
oscillation task, while 𝑟1 and 𝑟2 are defined as:  

 𝑟1 = (𝐴𝑟|𝑥|𝑛 + 𝐵𝑟|𝜃|𝑛 + 𝐶𝑟|u|𝑛)𝐷𝑟        (20) 
 and:  
 𝑟2 = 𝑟1 + 𝐸𝑟           (21) 

 where the constant parameter s are respectively set as Ar =10−2, Br = 10−1, Cr = 5, Dr = -10−2, Er = -102, and n = 
2. The shape of the reward function allows for penalizing the magnitude of  x, , and u. Therefore, the optimal policy 
will be that in which the system manages to perform the oscillation with the lowest input possible, and the tower is in 
the initial position at the end of the task. On the other hand, the actor  𝜋𝜑 and critic Qϑ neural networks are multilayer 

perceptrons with architectures as respectively shown in (a) and (b) of Figure 7. 

 
Figure 7: (a) Actor neural network 𝜋𝜑 architecture. (b) Critic neural network Q𝜗    architecture. 

   
The training process of the agent is done by employing the DDPG algorithm under the following restrictions:  
 u ≤ 𝑢𝑚𝑎𝑥 ,        |𝑥| ≤ 𝑥𝑙𝑖𝑚,        𝑡 ≤ 𝑡𝑓       (22) 

 where 𝑢𝑚𝑎𝑥   is the maximum amount of input allowed to the controller, set to [18 rad, 4×10 4 N.m, 20 rad] for roll 

angle, generator torque and pitch angle, respectively and 𝑥𝑙𝑖𝑚, is the maximum lateral output of the plan, and 𝑡𝑓 is the 

maximum duration of the task, set to 25 sec. Then, the sensitivity analysis of the controller consists of evaluating its 
performance under modified environments featuring variations of the physical properties of the system. Finally, to 
expand the optimal behavior space for the agent, a post-training of its structural parameters is performed in a modified 
environment.   

3.1. Stability analysis 

  Consider the plant model (6) and Equation (20) for capturing reward, estimation errors of both the state vector and 
the weighting parameters model have been guaranteed. 
 Proof of Theorem 2. Consider the following Lyapunov candidate  

 𝑉 =
1

2
𝑟2 +

1

2
(𝐴𝑟

2 + 𝛽𝑟
2 + 𝐶𝑟

2)        (23) 

 Taking the time derivative of V leads to:  

 𝑉̇ = 𝑟𝑟̇ + (𝐴𝑟𝐴̇𝑟 + 𝐵𝑟𝐵̇𝑟 + 𝐶𝑟𝐶̇𝑟)        (24) 

Replacing Eq. (20), results in:  

 𝑉̇ = 𝐴𝑟(𝑟̇|𝑥|2 + 𝐴̇𝑟) + 𝐵𝑟(𝑟̇|𝜃|2 + 𝛽̇𝑟) + 𝐶𝑟(𝑟̇|𝑢|2)2 + 𝐶̇𝑟)     (25) 

Assuming Eq. (2), yields to:  
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 𝑉̇ = 𝐴𝑟(𝑦̇|𝑥|2 − 𝛾𝑄̇′|𝑥|2 + 𝐴̇𝑟) + 𝐵𝑟(𝑦̇|𝜃|2 − 𝛾𝑄̇′|𝜃|2 + 𝐵̇𝑟) + 𝐶𝑟(𝑦̇|𝑢|2 − 𝛾𝑄̇′|𝑢|2 + 𝐶̇𝑟)
2
 (26) 

Factorizing and rewriting terms multiplied by 𝑦̇ lead to:  

𝑉̇ = 𝑦̇(𝐴𝑟|𝑥|2 + 𝛽𝑟|𝜃|2 + 𝐶𝑟|𝑢|2⏟                
𝑟

) + 𝐴𝑟(−𝛾𝑄̇′|𝑥|2 + 𝐴𝑟) + 𝐵𝑟(−𝛾𝑄̇′|𝜃|2 + 𝐵̇𝑟) + 𝐶𝑟(−𝛾𝑄̇′|𝑢|2 + 𝐶̇𝑟) (27) 

If we choose quantity of second, third and fourth parenthesis in a way making them zeros, three adaptive laws for 
featuring amounts of coefficients in reward equation will be achieved as following:  

 𝐴̇𝑟 = 𝛾𝑄̇′|𝑥|2𝐵̇𝑟 = 𝛾𝑄̇′|𝜃|2𝐶̇𝑟 = 𝛾𝑄̇′|𝑢|2       (28) 
Only left term of Lyapunov’s function derivative is:  

 𝑉̇ = 𝑦̇𝑟 ≤ |𝑦̇||r| ≤ (|𝑟̇| − 𝛾|𝑄̇′|)|r|        (29) 

  Outside of the impact set 𝑆 = {𝑠||𝑟̇| ≥ 𝛾𝑄̇′} derivative of Lyapunov function is negative and proves system’s error 

will be ultimately bounded. Furthermore, the fact that the derivative of Lyapunov’s function is negative implies that 
the entire system is stable and the network weights are convergent. Based on Eq. (29) and the range of its trueness, r 
is bounded, causing y to be bounded in Equation (2), allowing the cost function in Equation (1) to be optimized.   

4. Numerical Results and Discussion 
  The starting point of this paper is the formulation of a multibody model of the floating wind turbine system easily 
manipulated by controlling an external torque applied to the tower. Simulink diagram of the model and controller is 
illustrated in Figure 8. This dynamic model is complex to exhibit a nonlinear behavior during the oscillation task and, 
at the same time, sufficiently simple to be used for a parametric study of the robustness and sensitivity of a nonlinear 
control law devised by using a deep RL method. Furthermore, the presence of disturbance, often inaccurately 
neglected in applications leading to the origination of unwanted dynamic phenomena, is taken into account in this 
investigation. As expected, the presence of disturbance has a mere impact on the performance of the controller devised 
by employing the deep RL approach. Implementing the modified environment and performing a post-training 
procedure for the agent resulting from the original design require only a small set of thirty-nine additional episodes to 
generate the optimal control policy for environments with or without the perturbation presence. For instance, the plant 
can indeed do the oscillation in an environment with disturbance, as shown in Figures 9 through 11. Thereby, this 
approach provides a promising path for further developments. As can be seen in Figures 9 through 11, our purpose, 
that is, controlling and stabilizing floating wind turbine has been fulfilled and after a short oscillating, the system 
reaches to final position.  

4.1. Discussion and Final Remarks 

  Based on the impact of the modified environments on the performance of the floating wind turbine devised in this 
work, the robustness of the RL-based control system is concluded. Therefore, the numerical experiments performed 
in this investigation prove the transfer learning approach to be promising for the reality-gap problem found in literature 
especially in the robotics field. Nonlinear model-based control systems, such as [43-46], to name a few, do not consider 
disturbance since the complexity of the resulting model is restrictive. In contrast, a model-free approach like the one 
in this work, based on deep RL, allows us to consider such a phenomenon. Additionally, given the generalization 
capability of neural networks, the robustness of the system to the uncertainty in the physical parameters is high, as 
shown in figures. This, to the best of the authors’ knowledge, has not been previously done in the literature. 
Furthermore, supposed robustness can be increased with the post-training proposed and numerically tested in the 
present work. The developed control system has restrictions related to the simplifications used in the disturbance 
model present in the environment during training. Furthermore, the floating wind turbine capacity can be extended by 
running training epochs in a subsequent session in an experimental setting. Assumed implementation is feasible given 
the sampling time used during training and the performance required by an actuator, both within commercial hardware 
margins.   
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Figure 8: Simulink diagram of floating wind turbine (upper figure), and Adaptive inverse with using deep RL 

(underneath figure) 
4.2. Summary and Conclusions 

  The authors’ research focuses on model designing, and controlling mechanical systems subjected to complex force 
fields. Therefore, the mutual interactions between multibody system dynamics, applied system identification, and 
nonlinear control fall within the scope of the authors’ research domain. In fact, the benchmark problems mentioned 
before are closer to practical systems employed in engineering applications, and the development of a robust controller 
for such systems seems quite promising. 
 In this paper, also, the sensitivity analysis of the deep RL controller applied to the floating wind turbine problem is 
performed. Through extensive numerical experiments, the effectiveness of the proposed controller is analyzed in the 
case of the presence of disturbance forces. The uniform ultimate boundedness of estimation errors of both the state 
vector and the weighting parameters model have been guaranteed by Lyapunov’s direct method. Subsequent works 
will focus on studying environments characterized by randomized parameters during the training procedure to further 
improve the robustness of the resulting control system. In summary, the current study focused on the computational 
elements of the floating wind turbine system’s oscillation problem. The goal of this work is to create a nonlinear 
controller using deep RL approaches that are simulated in a virtual environment. The numerical results of using the 
controller were then simulated in Matlab, demonstrating key characteristics of floating wind turbines. Future 
expansions of the current study will include the creation of an in-depth examination of the deep RL-based sensitivity 
and robustness of the control system, as well as its experimental application employing sophisticated disturbance 
models.  
 

 
Figure 9: Surge and Sway with deep reinforcement learning-based model reference adaptive inverse control 



 

11 

 

  
Figure 10: Heave and Roll with Deep reinforcement learning-based model reference adaptive inverse control 

 
Figure 11: Pitch and Yaw with Deep reinforcement learning-based model reference adaptive inverse control 
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