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Abstract

Clustering is a fundamental task in data mining and machine learning, grouping similar objects based
on their features. It has applications in image analysis, market segmentation, and bioinformatics.
Among clustering methods, DBSCAN (Density-Based Spatial Clustering of Applications with Noise)
stands out for finding arbitrary-shaped clusters and handling noise.

DBSCAN requires two parameters: € (neighborhood radius) and MinPts (minimum points for a dense
region). Accurate parameter determination is crucial for algorithm performance.

This paper proposes a novel approach to DBSCAN parameter determination. Instead of treating ec as
continuous, we discretize it using radii of empty circles from the VVoronoi diagram of the points. This
simplifies € selection and enhances clustering robustness. Our method leverages VVoronoi geometric
properties, offering a more intuitive and accurate way to set e.

Experimental results show that this discrete approach simplifies parameter tuning while maintaining
or improving clustering quality compared to existing methods. This advancement enables more
reliable and efficient clustering in practice.

Keywords: Clustering, DBSCAN, Genetic Algorithm, Optimization, Voronoi Diagram, Delaunay
Triangulation
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Introduction

Clustering is a fundamental task in unsupervised learning , aimed at grouping a set of objects in such a way that
objects in the same group (or cluster) are more similar to each other than to those in other groups[1]. Among various
clustering algorithms, the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is widely used
due to its ability to find arbitrarily shaped clusters and to identify noise points [2]. However, the performance of
DBSCAN heavily depends on the selection of its two key parameters: epsilon €, which defines the radius of the
neighborhood, and the minimum number of points (minPts) required to form a dense region[4 , 5].

Traditional methods for selecting these parameters often involve heuristics or grid search, which can be
computationally expensive and may not always yield optimal results. Genetic algorithms (GAs), which are inspired
by the process of natural selection, have been applied to optimize DBSCAN parameters. These algorithms operate
on a population of potential solutions, iteratively applying crossover and mutation operators to explore the search
space and improve solutions based on a fitness function [6, 7].

In recent research, a hybrid approach combining DBSCAN with Multi-Objective Genetic Algorithms (MOGAS) has
shown promise. This approach, known as MOGA-DBSCAN, treats the parameter selection problem as a multi-
objective optimization task, optimizing multiple cluster validity indices to find a set of optimal solutions(e and
minPts) [16]. One notable example is the use of NSGA-II, a fast and elitist multi-objective genetic algorithm, to
optimize these indices[8 , 9]. Despite these advances, there remains a need for more efficient and effective methods
to determine the optimal € values. One promising direction, inspired by geometric properties of the data, involves
leveraging the Voronoi diagram to identify candidate ¢ values. The Voronoi diagram partitions the space into
regions based on the distance to a specific set of points, with the empty circles formed by these partitions serving as
strong candidates for € values[10 , 11].

In this paper, we propose an enhanced MOGA-DBSCAN algorithm that incorporates Voronoi diagram-based
epsilon candidates. Unlike traditional continuous parameter spaces, our approach defines a discrete search space for
€ using the radii of empty circles from the Voronoi diagram *. We modify the crossover and mutation operators to
operate within this discrete space, significantly reducing the number of generations required for convergence and
improving the robustness of the parameter selection process .

The contributions of this paper are threefold:
¢ We introduce a novel method for defining a discrete search space for € using Voronoi diagram-based empty
circles.
e We enhance the crossover and mutation operators of MOGA-DBSCAN to effectively explore this discrete
space .
e We demonstrate through experimental results that our approach reduces computational overhead and
improves clustering quality compared to existing methods.

The rest of the paper is organized as follows: Section 2 reviews related work on DBSCAN parameter optimization
and genetic algorithms. Section 3 details the proposed MOGA-DBSCAN algorithm with Voronoi-based epsilon
candidates. Section 4 presents experimental results and performance evaluation. Finally, Section 5 concludes the
paper and discusses potential future work.

Related Work

The optimization of DBSCAN parameters has been a subject of extensive research, with various approaches
explored to enhance the performance and effectiveness of the algorithm. This section reviews relevant works,
focusing on MOGA-DBSCAN, single-objective optimization methods, and recent advances in using Voronoi
diagrams for epsilon selection [14].

MOGA-DBSCAN

The Multi-Objective Genetic Algorithm for DBSCAN (MOGA-DBSCAN) was introduced to address the challenges
associated with determining optimal parameters for DBSCAN. Traditional methods often rely on exhaustive search
or heuristic approaches, which can be computationally intensive and may not yield the best clustering results.[16]
MOGA-DBSCAN leverages the power of multi-objective optimization to simultaneously optimize multiple cluster
validity indices, such as the Silhouette index , and Outlier index .

! The implementation is vaialable at https://github.com/HosseinEyvazi/Enhanced-Moga-DBSCAN
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In the MOGA-DBSCAN framework, a population of candidate solutions is evolved over multiple generations using
genetic operators such as selection, crossover, and mutation. The NSGA-I1I algorithm, known for its fast and elitist
approach, is commonly employed to guide the search towards Pareto-optimal solutions[20], balancing the trade-offs
between different objectives.

Key to MOGA-DBSCAN is the encoding of DBSCAN parameters (epsilon and minPts) as chromosomes, which are
manipulated through genetic operations. This approach allows for an efficient exploration of the parameter space,
reducing the risk of getting stuck in local optima and improving the overall clustering quality.

Single-Objective Optimization of DBSCAN

Single-objective optimization methods for DBSCAN focus on optimizing a single cluster validity index [17]. These
approaches, while simpler than multi-objective methods, can be effective in certain scenarios. In the literature,
various single-objective optimization techniques have been applied to DBSCAN, including:

e Grid Search: A straightforward method where the parameter space is discretized into a grid, and each
combination of parameters is evaluated to find the optimal set. This method, however, can be
computationally expensive, especially for large datasets[18].

e Gradient-Based Methods: These methods use gradient descent techniques to iteratively adjust the
parameters to minimize (or maximize) a given objective function[19]. Gradient-based methods require the
objective function to be differentiable, which is not always the case for clustering validity indices.

e Evolutionary Algorithms: Similar to genetic algorithms, other evolutionary algorithms like Particle Swarm
Optimization (PSO) and Differential Evolution (DE) have been used to optimize DBSCAN parameters.
These methods are capable of handling complex, multimodal objective functions[20].

While single-objective optimization methods can be effective, they often do not capture the trade-offs between
different aspects of clustering quality, which is a key advantage of multi-objective approaches like MOGA-
DBSCAN.

ECR-DBSCAN

The Enhanced Clustering Result DBSCAN (ECR-DBSCAN) method, as detailed in the second paper, introduces a
novel approach to determine the epsilon parameter using VVoronoi diagrams. In ECR-DBSCAN, the epsilon value is
selected based on the radius of the largest empty circle that can be inscribed in the Voronoi cells of the dataset[21].
This method is based on the observation that such empty circles are good candidates for defining the neighborhood
radius in DBSCAN.

The ECR-DBSCAN algorithm involves the following steps:
e  Construct the Voronoi diagram for the given dataset.
¢ Identify the empty circles corresponding to the VVoronoi cells[22].
e Select the epsilon value as the radius of one of these empty circles, typically using criteria such as the
elbow method to balance between including sufficient points and avoiding excessive noise.

This approach effectively narrows the search space for epsilon, making the parameter selection more efficient and
robust. Experimental results have shown that ECR-DBSCAN can achieve superior clustering performance compared
to traditional methods, particularly in datasets with varying densities and noise levels.

Comparison and Synthesis

The methods reviewed highlight different strategies for optimizing DBSCAN parameters. MOGA-DBSCAN offers
a robust framework for multi-objective optimization, leveraging genetic algorithms to explore the parameter space
effectively. Single-objective optimization methods, while simpler, can be effective but often lack the ability to
balance multiple aspects of clustering quality.

The ECR-DBSCAN approach provides a novel perspective by utilizing geometric properties of the data through
Voronoi diagrams, offering a discrete and efficient way to select epsilon. This aligns with our proposed
enhancement to MOGA-DBSCAN, where we incorporate VVoronoi-based epsilon candidates to define a discrete
search space.

By synthesizing these approaches, our enhanced MOGA-DBSCAN aims to combine the strengths of multi-objective
optimization with the efficiency of Voronoi-based epsilon selection, ultimately leading to improved clustering
performance and reduced computational overhead.

Methodology
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In this section, we introduce the enhanced MOGA-DBSCAN algorithm, which leverages VVoronoi diagram-based
epsilon candidates to define a discrete search space for € [14]. The proposed maodifications to the crossover and
mutation operators are designed to operate within this discrete space, thereby improving the efficiency and
effectiveness of the parameter optimization process.

Voronoi Diagram for Epsilon Selection

The Voronoi diagram partitions the space into regions based on the distance to a specific set of points, known as
sites. For each site, there is a corresponding VVoronoi cell consisting of all points closer to that site than to any other.
The largest empty circle that can be inscribed in each VVoronoi cell represents a natural candidate for the e parameter
in DBSCAN.

To leverage these VVoronoi-based epsilon candidates, we first construct the Voronoi diagram for the given dataset.
The steps involved are as follows:

e  Generate the Voronoi diagram for the dataset.

o Identify the empty circles corresponding to the VVoronoi cells[22].

e Extract the radii of these empty circles to form a discrete set of epsilon candidates, € ={ep€z 6}

These epsilon candidates provide a robust and geometrically meaningful basis for defining the neighborhood radius
in DBSCAN [21].

MOGA-DBSCAN Algorithm

The enhanced MOGA-DBSCAN algorithm utilizes a Multi-Objective Genetic Algorithm (MOGA) to optimize both
€ and minPts parameters. The algorithm operates on a population of candidate solutions, evolving them over several
generations to find Pareto-optimal solutions that balance multiple cluster validity indices.[16 , 23]

Initialization

The initial population is generated by randomly selecting € values from the discrete set of Voronoi-based candidates
and randomly selecting minPts values within a specified range. Mathematically, each individual in the population is
represented as a vector:

individual = [&, minPts] 1)
For each individual:
e cis selected from the discrete set €.

e minPts is selected from a continuous range [MNPsyy, MinPtsy,.,).

Formally, the initialization process can be described as:

eEEL )
minPts ~ Uniform(minPts;, minPts_,.) ©)

€ and minPts bounding:

The bounds of € are the minimum and average lengths of the edges in the Delaunay triangulation graph on the data
points.

For each point, we determine the number of neighbors within a radius equal to the average and minimum edge
lengths , then used then as the MinPts bounds.

Crossover Operator

The crossover operator combines the parameters of two parent individuals to produce offspring[24 , 12]. In the
enhanced MOGA-DBSCAN, the crossover process is adapted to the discrete nature of the epsilon candidates:
Select two parent individuals, parentl and parent2.

Generate offspring using one of the following strategies, selected with equal probability:

e  Use ¢ from parentl and minPts from parent2:
offspring = [parentl,, parent2 ;i pw) 4)

e Use ¢ from parent2 and minPts from parentl:
offspring = [parent2_, parentl ;. pw] (5)
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e Use the € value from the set € that is closest to the average of the parents’ € values, and use the average of
the parents’ minPts values:

parentl, + parent2,

avg eps =

2 (6)
nearest_eps = arg II;?EI?|EE' — avg eps| @)
. parentlyinpes + ParentZyinps
offspring = |nearest_eps, 2 ] (8)

The modified crossover operation ensures that € remains within the discrete set of Voronoi-based
candidates, enhancing the efficiency of the search process.

Mutation Operator
The mutation operator introduces small random changes to an individual's parameters to maintain diversity in the
population[13]. For the enhanced MOGA-DBSCAN, the mutation process is adapted as follows:

o With a specified mutation rate, mutate the minPts value by adding or subtracting a small integer:
individual ;,pee « individual ;pp + AminPts

Where AminPts € {—1,1}
AminPts € {—1,1}
e For ¢, select a neighboring value from the discrete set of VVoronoi-based candidates:

1. Identify the current € value in the discrete set.
2. Select the next or previous € candidate in the set:

Enew = Ecngrent — 1 (9)

€Enew = Ecurrem T 1 (20)

This approach ensures that € mutations remain within the geometrically meaningful candidates, reducing the risk of
selecting suboptimal values.

Fitness Evaluation

Similar to the original MOGA-DBSCAN, our fitness function is based on the Silhouette index and the Outlier
index[25 , 16], which was proposed by the authors of the MOGA-DBSCAN paper. These indices measure different
aspects of clustering quality, such as compactness and separation of clusters, as well as the identification of outliers.
Formally, the fitness function for an individual $i$ can be represented as:

Fitness(i) = [Silhouette(i), Outlier(i)] (11)
Where :
e The Silhouette index measures the quality of clustering by assessing how similar an object is to its own
cluster compared to other clusters[25].

e The Outlier index evaluates the degree to which points are considered outliers within the clustering
results[16].

Selection and Evolution
The NSGA-II algorithm [16] is used to select individuals for the next generation based on Pareto dominance and
crowding distance. This process involves:

e Sorting the population into non-dominated fronts.

e  Selecting individuals based on rank and crowding distance to maintain diversity.

The evolution process continues for a specified number of generations or until convergence criteria are met.

Algorithm Summary
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This enhanced approach ensures a more efficient and robust parameter optimization process by leveraging
geometrically meaningful epsilon candidates and maintaining a discrete search space.

The complete MOGA-DBSCAN algorithm with VVoronoi-based epsilon candidates can be summarized as follows:

Algorithm 1 Enhanced MOGA-DBSCAN

be =

[N

=

: Input: Dataset D, Population size N, Number of generations (7

Output: P:Lr(‘to—ophmal set of DBSCAN parameters

Compute the Voronoi diagram for the dataset D

Extract the radii of empty circles from the Voronoi diagram as the set of epsilon candidates F
Initialize the population with random solntions (¢, minPts), where e ¢ F

: for each generation g =1 to (¢ do

T: if generation g equals 50 then

& break & Stop if generation is 50
: end if

10: Evaluate the fitness of each solution using multiple cluster validity indices

11: Apply selection to choose parents

12: Apply crossover and mutation to generate offspring, ensuring that ¢ values remain within F
13: Replace the population with the union of offspring and population

14: Apply selection to population to limit the size of population to Population size

15: if termination condition met then

16i: break = Stop if termination condition is met
17: end if

15: end for

19: return Pareto-optimal set of solutions = User chooses desired solution from this set

Experimental Results and Performance Evaluation

In this section, we present the experimental results and performance evaluation of the enhanced MOGA-DBSCAN
algorithm compared to the traditional MOGA-DBSCAN. We evaluate both algorithms on four datasets: Spirals,
Triangle, Isolation, and UN. The performance is measured using three clustering validity indices: Dunn Index,
Silhouette Score, and Rand Index. Additionally, we analyze the number of generations required for convergence in
each algorithm.

Datasets and Experimental Setup
The datasets used for evaluation include various characteristics to test the robustness and effectiveness of the
proposed algorithm:

Spirals: A complex dataset with three interleaving spirals, testing the algorithm's ability to handle non-
linear, closely packed, and overlapping clusters. It evaluates the algorithm's adaptability to intricate
geometric arrangements and its parameter optimization (eps and minPts) for accurate clustering.

Triangle: A triangular-shaped dataset with varying point densities along its edges, challenging algorithms
to handle non-uniform distributions. It tests the algorithm's ability to recognize geometric shapes and adapt
to density fluctuations, reflecting real-world data irregularities.

Isolation: A dataset with two well-separated clusters and outliers, evaluating the algorithm's ability to
identify distinct clusters while managing noise and outlier detection. It tests robustness in handling spatial
separations and outlier influence on cluster integrity.

UN: A dataset with data points forming the shapes of "U" and "N," challenging algorithms to handle non-
linear and complex cluster formations. It tests the algorithm's adaptability to non-standard cluster shapes,
such as acute angles and edge cases, simulating real-world data complexities.

These datasets collectively provide a comprehensive evaluation of the enhanced MOGA DBSCAN algorithm,
highlighting its strengths and weaknesses in handling diverse clustering challenges and advancing its applicability to
real-world scenarios.




Results

1st intemational Conference on

Artificial Intelligence
in the Era of Digital Transformation

Event Place: Thilisi,Georgia

PUBLISH IN JOURNALS INTERNATIONAL CERTIFICATION

Ol F | JEud Jgod s 50 Sguto igh
1st International Conference on Artificial Intelligence in the Era of Digital Transformation T

el st AT Ll

The performance of both MOGA-DBSCAN and enhanced MOGA-DBSCAN is summarized in Tables

Figure 1: Spirals Dataset (MOGA-DBSCAN).
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Figure 2: Spirals Dataset (Enhanced MOGA-DBSCAN).
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Table 1: Performance on Spirals Dataset

Algorithm Dunn Index|15] | Silhonette Score | Rand Index | Generations
MOGA-DBSCAN 0.3674 -0.6826 -(.0020 10
Enhanced MOGA-DBSCAN | 0.0996 0.5194 1.0000 10

Figure 3: Triangle Dataset (MOGA-DBSCAN
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Figure 4: Triangle Dataset (Enhanced MOGA-DBSCAN)
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Table 2: Performance on Triangle Dataset

Algorithm Dunn Index | Silhouette Score | Rand Index | Generations
MOGA-DBSCAN 0.0235 0.3352 (.8135 10
Enhanced MOGA-DBSCAN | 0.0282 0.3404 ().B8TH 10
Figure 5: Isolation Dataset (MOGA-DBSCAN)
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Figure 6: Isolation Dataset (Enhanced MOGA-DBSCAN)
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_Table 3: Performance on Isolation Dataset .
Algorithm Dunn Index | Silhouette Score | Rand Index | Generations
MOGA-DBSCAN (.0000 -1.0000 (.0000 50
Enhanced MOGA-DBSCAN | 0.1267 0.2780 (.9896 20
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Figure 7: UN Dataset (MOGA-DBSCAN)
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Figure 8: UN Dataset (Enhanced MOGA-DBSCAN)
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_Table 4: Performance on UN Dataset

Algorithm Dunn Index | Silhouette Score | Rand Index | Generations
MOGA-DBSCAN 0.1174 (1.3279 1.0000 15
Enhanced MOGA-DBSCAN | 0.1174 (.3279 1.0000 10

The experimental results highlight several key observations regarding the performance of the MOGA-DBSCAN and
Enhanced MOGA-DBSCAN algorithms across different datasets:

e Spirals Dataset: The Enhanced MOGA-DBSCAN demonstrated superior performance compared to the
standard MOGA-DBSCAN. While the MOGA-DBSCAN achieved a Dunn Index of 0.3674, the Enhanced
MOGA-DBSCAN vyielded a lower Dunn Index of 0.0996, indicating challenges in cluster separation.
However, the Enhanced MOGA-DBSCAN significantly outperformed in the Silhouette Score (0.5194 vs. -
0.6826) and Rand Index (1.0000 vs. -0.0020), showcasing improved cluster cohesion, separation, and
accuracy. Both algorithms completed their evaluations in 10 generations, emphasizing the efficiency of the
enhanced version.

e Triangle Dataset: The Enhanced MOGA-DBSCAN showed marginal but consistent improvements over the
MOGA-DBSCAN. The Dunn Index increased from 0.0235 to 0.0282, the Silhouette Score improved from
0.3352 to 0.3404, and the Rand Index rose from 0.8135 to 0.8876. These results indicate better cluster
separation, compactness, and accuracy in handling the dataset's varying densities. Both algorithms operated

within 10 generations, highlighting the enhanced version's efficiency.

e Isolation Dataset: The Enhanced MOGA-DBSCAN significantly outperformed the MOGA-DBSCAN,
which failed to converge effectively within 50 generations, resulting in a Dunn Index of 0.0000, a
Silhouette Score of -1.0000, and a Rand Index of 0.0000. In contrast, the Enhanced MOGA-DBSCAN
achieved a Dunn Index of 0.1267, a Silhouette Score of 0.2780, and a near-perfect Rand Index of 0.9896,
demonstrating its ability to handle well-separated clusters and outliers. The enhanced version also
converged in just 20 generations, showcasing its efficiency.

e UN Dataset: Both algorithms achieved identical performance metrics, including a Dunn Index of 0.1174, a
Silhouette Score of 0.3279, and a perfect Rand Index of 1.0000. However, the Enhanced MOGA-DBSCAN
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reached these results in 10 generations, compared to the 15 generations required by the MOGA-DBSCAN,
highlighting its improved computational efficiency and faster convergence.

Summary

In summary, the Enhanced MOGA-DBSCAN consistently demonstrated superior or equivalent performance across
all datasets, with notable improvements in cluster separation, accuracy, and computational efficiency. These
advancements underscore its potential for handling complex, real-world clustering tasks effectively.

Conclusions and Future Works

In this paper, we proposed an enhanced MOGA-DBSCAN algorithm that leverages Voronoi diagram-based epsilon
candidates to define a discrete search space for the ¢ parameter. By integrating these epsilon candidates into the
crossover and mutation operators of the genetic algorithm, we improved the efficiency and robustness of the
parameter optimizationprocess.

The experimental results demonstrate that our enhanced algorithm reduces the computational overhead and
improves clustering quality in various datasets. Specifically, the enhanced MOGA-DBSCAN algorithm achieved
superior performance in terms of the Silhouette Score and Rand Index, especially in challenging datasets like Spirals
and Isolation. Additionally, the number of generations required for convergence was significantly reduced in some
cases, further highlighting the efficiency of our approach.

Future work could explore the following directions:

e Extending the approach to other clustering algorithms and parameter optimization tasks.

e Investigating the impact of different crossover and mutation strategies within the discrete epsilon space.

e Applying the enhanced MOGA-DBSCAN algorithm to large-scale and high-dimensional datasets to

evaluate its scalability and effectiveness in more complex scenarios.

By building on the strengths of multi-objective optimization and geometric insights from Voronoi diagrams, our
enhanced MOGA-DBSCAN algorithm provides a promising direction for improving clustering performance and
computational efficiency in unsupervised learning tasks.
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